Quantrum

Алготрейдинг на NYSE и NASDAQ. Роботы для торговли.

Получайте новости с этого сайта на
Alexander Rumyantsev

Python в помощь тестированию структурных продуктов

Воодушевлённый статьёй с рекламой структурных продуктов на Хабре , адаптировал python-скрипт для их самостоятельного тестирования. Основная идея в том, что подобные продукты предлагают 100% защиту капитала.  А учитывая 10 лет бычьего рынка, исторические показатели подобных продуктов одурманивают безрисковым раем.

Скрипт подойдёт для быстрого и понятного тестирования своих портфелей с ребалансировкой в разлиные периоды. Ну а кому-то данный инструмент может пригодиться для самостоятельного построения подобных стратегий. Их наипростейшей формы. Однако брокеры пишут, что это не каждому под силу.

Код выложен в GitHub в виде Jupyter-блокнота. Поехали!

Пара слов, для введения

Тестировать буду на американских акциях и там доходность будет пониже, чем в рублях. Российский рынок в абсолютных значениях на графиках поинтересней, но и рисков в нём побольше. Суть тестов от этого не поменяется.

Данные берём из бесплатного Alpha Advantages, где предварительно нужно получить ключ, поделившись email-адресом. Краткая инструкция в блокноте. Котировки российских бумаг вы можете взять на Финаме.

"Обаяние" структурного продукта

Общая суть - ваш капитал в сохранности, а доходность выше банковского депозита. Вот только пропущено несколько элементов уравнения:

  • По банковскому депозиту доход есть всегда, а здесь есть риск сыграть в ноль;
  • Вы получите прибыль, но на весомый кусок пирога претендует брокер;
  • Накладывается ограничение на использование вложенных денег;
  • Брокер практически не несёт никаких рисков, а участвует только в прибыли.

Стратегия

Рассмотрим самую простую стратегию:

  • Покупаем на 90% капитала краткосрочные казначейские облигации;
  • На остаток покупаем высокорискованный актив;
  • Ставим стоп на 10% от цены на старте периода.

В основе стратегии: казначейские облигации дают 1-3% годовых практически исключая просадку (если доходность есть). 10% от просадки актива, купленного на 10% капитала, как раз будут тем самым риском, который покроют облигации. В периоды бычьего рынка некоторые акции могут вырасти в несколько раз, что и подарит нам счастье.

Для ручного повторения данной стратегии необходимо выполнить следующие неподсильные действия:

  • Купить облигации или низкорисковый доходный инструмент. Например, в виде ETF.
  • Купить акции.
  • Поставить стоп-приказ.

Как тестируем

Кратко опишу некоторые решения с выдержками кода, которые позволили сделать тестирование достаточно гибким и удобным.

Расписание

Производить ребалансировку можно в следующие периоды: неделя, месяц, год. А также в любой день внутри периода: первый, N-ый, последний. За это отвечает класс Schedule(): 

Исходный код и ссылка на репозиторий на Quantrum.me.

Цикл по данным

StructuredProductMill().run()

Как я писал в одной из статей, мы можем обходить в цикле только даты ребалансировки и пропустить все остальные дни. Но тогда мы теряем статистику по изменению активов внутри периода, не увидим доходность и просадки за каждый день. В ущерб скорости скрипт обходит каждый день, что позволяет видеть рыночную стоимость открытых позиций и применить проверку стоп-приказа.

Ребалансировка

StructuredProductMill().rebalance()

Здесь активы, которые можно открывать, распределяются на доступный капитал. После сравнения расчёта с открытыми позициями производится исполнение сделок на нужное количество: 

Исходный код и ссылка на репозиторий на Quantrum.me.

Сделки

StructuredProductMill().trade()

И здесь для скорости можно пожертвовать деталями и контролировать только изменение доходности каждой позиции. Но скрипт учитывает комиссии и стоимость активов, а также ведет историю сделок, что позволяет рассчитать транзакции и исполнить стоп-приказ в любой момент. В этом методе обновляются позиции и размер свободного кэша.

Запуск

Для запуска необходимо указать набор активов с долями и параметры теста. Мы же будем тестировать структурные продукты за календарный год: 

Исходный код и ссылка на репозиторий на Quantrum.me. 

Внизу блокнота есть графики с доходностью и просадками в даты ребаланса (в конце года), что подтверждает крайне низкие просадки капитала в моменты отчёта и постоянно растущую доходность. Хоть эта доходность и проигрывает широкому индексу американских компаний S&P 500.

Какие результаты

В тестах участвовали свободно торгующихся американские инструменты с 2011 года:

  • BIL - ETF на краткосрочные казначейские облигации с доходностью 2% годовых на момент написания статьи. Помним, что в период с 2009 до 2017 ставки были рядом с нулём. Альтернативой можно использовать MINT (фонд на краткосрочные инструменты с фиксированной доходностью).
  • AAPL - акции компании Apple.
  • MSFT - акции компании Microsoft.
  • TSLA - акции компании Tesla.

AAPL

Данная конструкция принесла за 8 лет доход в 24% (среднегодовая 2.6%) с просадкой между ребалансировками -6%. Но на стыке лет просадка около нуля. Стопа не коснулись, рынку со 180% дохода порядком проиграли.

MSFT

Данная конструкция принесла за 8 лет доход в 26% (среднегодовая 2.75%) с просадкой между ребалансировками -2%. На стыке лет просадка отсутствует.

TSLA

Данная конструкция принесла за 8 лет доход в 45% (среднегодовая 4.6%) с просадкой между ребалансировками аж -15%. Но всё это в 2013 году, когда Тесла выросла почти в 5 раз. На стыке лет просадка до -2%. Самый беспокойный, но и прибыльный пассажир.

Заключение

Вы можете воспользоваться данным блокнотом для поиска своих стратегий с минимальным риском или потестировать простые портфели. 

В комментариях задавайте вопросы и напишите, что вам не понравилось в статье. А может есть совет, что улучшить?

 

Welcome!!! Is it your First time here?

What are you looking for? Select your points of interest to improve your first-time experience:

Apply & Continue